

Technology Evolution For Heavy Duty Automotive Natural Gas Engines

Dr. Mostafa M Kamel Cummins Westport Inc.

Agenda

- HD Gas Engine Development
 - Where we were
 - Where we are
 - Where do we go from here
- Areas of Interest
 - Oil control and PM
 - Fine particles
 - Hydrogen
- New Technology
- Outlook

Where we were

- In '92; Cummins L10G was the first HD automotive Natural Gas engine to be certified at 2.5 g NOx
- In '95, Cummins B5.9G was the first HD Natural Gas engine employing closed loop electronic control system

Lean Burn Combustion System

Where we were.....

- Half diesel NOx and 10% of diesel PM
 - LBSI
 - 2-way CATs
- More products
 - Cummins C8.3G engine at 280HP
- More competitors with electronic engines

Where we are

- Focus on Reliability
 - Closer to diesel
 - Diagnostics
- Lower Emissions
 - -1.5 g NOx
 - -0.01 PM

Where we are

- Diesel emission greatly reduced
 - -2.5 g NOx
 - -0.08 g PM
- Gas engines reaching LBSI limits
 - -1.0 g NOx
 - -0.01 g PM
- Both diesel and natural gas engines are challenged to become even cleaner and more efficient to meet environmental and end-user demands

Westport

U.S. Emission Standards

Where do we go from here

- Emissions requirements driving lower
 - 1.2 NOx in 2007
 - -0.2 NOx in 1010
- Diesel technology
 - Efficiency drops as NOx level drop
 - Engine system costs go up as NOx and PM levels drop
 - Diesel fuel cost increases, specially with ULSD

Where do we go from here...

- Natural Gas engine technology
 - Need to get to 2010 emissions levels several years ahead of diesel
 - Need new technologies
 - Continue to improve reliability
 - Improve efficiency
 - Compete with diesel LCC

Agenda

- HD Gas Engine Development
 - Where we were
 - Where are we
 - Where do we go from here
- Areas of Interest
 - Oil control and PM
 - Fine particles
 - Hydrogen
- New Technology
- Outlook

Use of Oxidation Catalysts

- Natural gas is inherently ultra-low Sulfur therefore very active catalysts can be used
 - NMHC, Aldehydes, CO control
 - Also reduces PM
 - Significant reduction in ultrafine particles
 - Generally accepted to consist predominantly of VOCs¹
 - Lubricating oil is a major contributor

Oil Control and PM Emissions

- Oil control has been significantly improved
 - important for PM emission reduction without catalyst
- Oxidation catalyst highly effective at controlling heavier hydrocarbons
 - mitigates nucleation of ultrafine particles after dilution leaving the exhaust pipe

Oxidation Catalyst & Ultrafine PM

CNG buses: Steady-State 55 MPH

Ref: Holmen B, Ayala, A. Oxidation Catalyst Effects on Natural Gas Transit Bus Ultrafine Particle Emissions. 6th International ETH Conference on Nanoparticle Measurements August 19-21, 2002, Zurich.

Hydrogen / Natural Gas Blends

- Natural gas is an ideal carrier for Hydrogen
- Higher flame speed extends lean operation and leads to lower NOx for same efficiency
- Under demonstration using B Gas Plus platform at SunLine Transit
 - 20% H2/CNG blend
 - ~50% reduction in NOx, NMHC
 - 7% reduction in CO2

Agenda

- HD Gas Engine Development
 - Where we were
 - Where are we
 - Where do we go from here
- Areas of Interest
 - Oil control and PM
 - Fine particles
 - Hydrogen
- New Technology
- Outlook

Near Term Developments

- Application of Plus technology to larger
 8.9 liter engine (L Gas Plus)
 - 320hp, 1000ft-lbs
- Investigation of hydrogen / natural gas blends
- Hybrid

2007/10 Technology Developments

- Focus will remain on highly diluted combustion
 - Spark Ignition
- Level of in-cylinder versus post-combustion emissions control remains under review
 - Lean NOx aftertreatment can be used (simplified relative to diesel due to lower engine-out emissions)
 - EGR with 3-Way Catalyst

Natural Gas with NOx Storage And Reduction

- Possible to achieve regeneration & desulphation with natural gas as reductant
- Single bed system
 - 90% conversion efficiency with 2.5% fuel penalty (degreened condition)
- High deterioration factors at present
 - due to desulphation
 - ~10ppm fuel Sulfur with CNG
 - − ~1ppm fuel Sulfur with LNG

Spark Ignition with Cooled EGR

- Published examples of SI engines operating with cooled EGR
 - Cooled EGR can improve in-cylinder NOx control (stability/HC emissions concerns)
 - Stoich-EGR-TWC offers low cost aftertreatment approach but is in infancy for HD automotive applications
- CWI SI engines can take advantage of Cummins diesel engine cooled EGR technology

CWI Plans

- CWI plans to offer new products in 2007 that meet the 2010 emission standards
 - Technology development is underway
 - Product development starts later this year

Agenda

- HD Gas Engine Development
 - Where we were
 - Where are we
 - Where do we go from here
- Areas of Interest
 - Oil control and PM
 - Fine particles
 - Hydrogen
- New Technology
- Outlook

Transit Cost per Mile Trends

Diesel Engine Costs Increase:

- efficiency drops as NOx level drops
- engine system costs go up as NOx and PM levels drop
- Diesel fuel cost increases, specially with ULSD

Natural Gas Engine Costs Remain Relatively Constant

- engine efficiency is expected to improve with EGR strategy
- technology will cost more, but that's offset by improved economy and increased volume
- natural gas fuel prices lower than diesel

Natural Gas Engine Outlook

- Product capability has grown with implementation of latest technologies
- Very low emissions are available in commercial products
- Technical evolution will continue with multiple technologies and development paths
 - New technologies offer the potential for low emissions <u>and</u> efficiency improvement
- A narrowing and possible reversal of the cost gap between natural gas and diesel engines is emerging with onset of evermore stringent emissions regulations
- Natural gas engines offer a pathway to Hydrogen

The Natural Evolution of Power

www.cumminswestport.com